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Abstract 

A method for the determination of sufficient conditions for the 

almost sure ?%ability of some continuous epstems of physical interest 

is presented. The motions of the systems under consideration are 

assumed to be described by linear partial differential equations with 

time-varying coefficients of a random nature. 

which is of a rather general form, is restricted for the sake of 

simplicity and ease of computations and is applied to problems of 

elastic columns and plates, a cantilever beam subjected to a random 

follower foree,and a string excited by a pressure-type random force. 

The emphasis both in the computations and in the nature of the method 

is on simplicity of computations and in the determination of stability 

conditions with a. minimum of assumptions. 

The method presented, 



Introduction 

.%e s t a b i l i t y  of systems described by l inear  ordinary differ- 

e n t i a l  equations with stochastic coefficients has been the object 

of considerable recent interest;  i n  particular,  the works of Kozin 

[l] , Caughey and Gray [2], Ariaratnam [3], Lepore and Shah 141 and 

Infante [ 5 ]  have discussed problems of t h i s  nature. The analogous 

problems f o r  p a r t i a l  d i f f e ren t i a l  equations, which natural ly  a r i s e  

i n  the study of the s t a b i l i t y  of structures subjected t o  random loads, 

have usually been reduced t o  problems of ordinary d i f f e ren t i a l  equa- 

2 

t ions by the use of a modal approach i n  which the amplitude of each 

mode i s  governed by an ordinary d i f f e ren t i a l  equation and each 

amplitude i s  investigated separately [ 2 ] ,  [3], [4]. However, the 

great majority of physically interest ing systems are  not amenable t o  

such a modal analysis because of the presence of the  randomly varying 

coeff ic ients  i n  the describing p a r t i a l  d i f f e ren t i a l  equations. Hence, 

it i s  desirable t o  obtain a method which can be applied d i r ec t ly  t o  

these p a r t i a l  d i f f e ren t i a l  equations. This i s  the object of t h i s  

paper. 

It should be pointed out t h a t  Wang [ 6 ]  has considered a similar 

problem, but h i s  approach d i f f e r s  fundamentally from the one described 

here; also, h i s  r e su l t s  were obtained by using fundamental properties 

of semigroups together with the  Gronwall inequality, and i n  the  case 

of ordinary d i f f e ren t i a l  equations r e su l t s  obtained i n  t h i s  mitnner 

are known t o  be weak. 

Numbers i n  brackets designate References a t  the  end of the paper. 2 
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The continuous systems considered i n  t h i s  work are  governed by 

l inear  p a r t i a l  d i f f e ren t i a l  equations with random coefficients; these 

coeff ic ients  are assumed t o  be s ta t ionary and ergodic, i n  the  

stochastic case. It i s  desired t o  obtain suf f ic ien t  conditions f o r  

the  almost sure asymptotic s t a b i l i t y  of the  equilibrium state of the  

! 

system. The procedure used f o r  t h i s  purpose i s  an extension of the 

method described i n  [ 5 ]  which involves a Liapunov type of approach. 

The application of t h i s  technique to several  problems of physical 

interest ,  which yield r e su l t s  believed t o  be new, shows t h a t  i t s  

simplicity and ease of computation m&e it an a t t r ac t ive  method 

especially since few assumptions on the  nature of the  random dis-  

turbances are required. 

It should be emphasized t h a t  the specif ic  techniques used a re  

not necessarily optimal, and tha t  the  r e su l t s  can probably be 

s ignif icant ly  improved. Further work toward t h i s  goal seems appro- 

pr ia te .  
- 
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Statement of the Problem 

Consider a continuous system which occupies a bounded domain 

R in one-, two-, or three-dimensional skace {:], and let C de- 

note the boundary of R. Designate by w(5t) the displacement of 

the system from an equilibrium state which, for simplicity, is taken 

as w(5-t) f 0; t here represents the time (t 2 0) and it is 

assumed that this displacement is governed by a linear partial dif- 

ferential equation of the form 

a2w c 26% $. y w  + y(t)w = 0, - x E R, t 2 0, 2 
with homogeneous time-independent boundary conditions of the form 

B W =  0, - x e c ,  ( 2 )  

and initial conditions 

In this formulation 9, 9 and y(t) are linear spatial 

differential operators and 5 is a positive constant. In the equa- 

tion of mcLqon, Eq. (l), the spatial op,: 0- ator terms have been 

separated, without loss of generality, into the two parts 

y(t), where y(t) includes all the terms with time-varying 

and 



4 

coeff ic ients  and those terms which are not self-adjoint, whereas 9 

contains only self-adjoint terms with constant coefficients. Hence, 

whenever w, and w s a t i s f y  the boundary conditions (2), 
L. 2 

The operator y(t) has therefore 

where the are time-invariant 

constants and the functions f i ( t )  

s ta t ionary functions which sa t i s fy  

1 

the  form 

M 
4- c f.(t)T, i = N + 1  1 

l inear  operators, the c a re  i 

are  measurable, s t r i c t l y  

an ergodic property ensuring the 

equality of time and ensemble averages. Under these conditions, 

if G i s  a measurable, integrable function defined on the f i( t)  

then the l i m i t  

t 
E(G[f i ( t ) ] ]  = 1j-m 1 

t - + m  

ex is t s  w i t h  probabili ty one. 

notation v E 

posed w i t h  respect to the function space whose nom i s  

It i s  a lso assumed that ,  w i t h  the 

the  problem defined by Eqs. (l), (2) is  well  aw 
X ’  

2 2 1 /2  
P[W,V] = ( J  [ W Y W  4- w 4- v ]dx3 - 

R 
(7) 
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It i s  c lear  t h a t  the formulation of the problem, as well  as 

the  choice of the space defined by (7), are motivated by the nature 

of the physical problems we wish to consider. Equations (l), (2) 

generalize the p a r t i a l  d i f f e ren t i a l  equations of e l a s t i c  structures 

and Eq. (7) i s  intimately related to the concept of energy f o r  such 

structures.  

It i s  desired to derive suff ic ient  conditions fo r  the almost 

sure asymptotic s t a b i l i t y  i n  the large of the equilibrium s t a t e  

w ( 5 , t )  E 0. That is, conditions on the f i ( t )  are  sought such 

tha t  the solutions w ( 5 t )  of (l), (2) with a rb i t ra ry  i n i t i a l  con- 

di t ions (3) will s a t i s f y  

lim 
t -+@a 

p[w(x , t ) ,  v(x I t)] = 0 

with probabili ty one. 

are deterministic and s a t i s f y  condition (6) then the sought con- 

di t ions w i l l  imply asymptotic s t a b i l i t y  i n  the sense of Liapunov. 

It i s  evident t ha t  i f  the  functions f i ( t )  
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Stab i l i t y  Analysis 

Consider t he  functional 

2 2 V[W,V] = J [WYW + v 
R 

+ bVW + cw ] d ~ ,  

where b and c are parameters depending on 5 ,  t o  be subsequently 

determined. 

all w sat isfying the  boundary conditions (2) 

It is noted tha t  V[O,O] = 0; and it i s  assumed t h a t  f o r  

f o r  some constant k 2 0. Hence 

2 2 
V[w,v] 2 $ [V + bvw + (k+c)w ]dx I 

R 

and if b .  and c are chosen so t h a t  

2 
b L 4(k+c) - 6 

f o r  some 6 > 0 then V i s  posit ive def in i te  and 

f o r  some posit ive constant B. 

L e t  us consider the time r a t e  of change of the functional (g), 

which i s  denoted by +[w,v], 
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(14) 
2 f~[w,v] = $ [ v g w  + w g v  +‘2v$ + bv + bw& + 2cwv]dx. - ?E R 

bv from Eq. (1) yields  the  time 3E Substi tution i n  this equation of 

rate of change of the functional (9) along the solutions of (1) as 

2 i [w,v, t ]  = I (vyw + w y v  + bv t 2cw-v + 
R 

+ (2v + bw)[-2kv - y w  - y(t)w])dx. - 

The use of (4) with w = w and w - v allows for  the simplifica- 

t i o n  of t h i s  expression t o  

1 2 -  

For w and v not both zero, consider the  r a t i o  ?/V with $ 

given by Eq. (16) and V by Eq. (9). L e t  a scalar  function 

%(t) be such t h a t  

fo r  a l l  w and v sat isfying the boundary conditions (2). Inte- 

gration of t h i s  expression on [ O , t ]  yields 

t 

0 
V ( t )  I V ( 0 ) e  ? 



a 

where V ( t )  denotes V [ w ( 5 t ) ,  v ( 5 t ) l  and V(0) = V[wo(x), V0(2)1- 

Inequality (18) provides an exponential bound on the  motion of the  

system a t  any time t i n  terms of t he  quantity 

- t  

t 1 
\(T)dz = 

1 
G[fi(T)]dT. An example of t h i s  type of resul t ,  applied t o  a 

0 

specif ic  problem, i s  given i n  [TI. 

l e t  us r e s t r i c t  ourselves t o  the  discussion of the system behavior 

as t 3 03 and we force the  res t r ic t ions  on the  fi(t) fo r  asymptotic 

s t a b i l i t y  t o  the form of conditions on expectations. 

In the  present work, however, 

From Equations ( 6 ) ,  (13) and (18) it i s  c lear  t ha t  if  

for  some constant 

t ha t  V ( t )  3 0  and hence P [ w ( s t ) ,  v(x,t)]  + O  as t + w .  Hence, 

Eq. (19) represents a sufficient condition for  the almost sure 

E > 0, then with probabili ty one it w i l l  follow 

- 

asymptotic s t a b i l i t y  i n  the large of w(E, t )  E 0. 

The application of t h i s  general method t o  a par t icular  ex- 

ample involves the following procedure: F i r s t  of all,  a constant 

k tha t  s a t i s f i e s  Eq. (10) must be found; then the  function %(t) 

of Eq. (17) i s  determined and the s t a b i l i t y  conditions expressed by 

the  inequality (19) are  forced i n  the  form of the desired expectations, 

, such as E ( l f i ( t ) l )  

which optimize these 

s t r a i n t  expressed by 

2 or  Elfi(%)); f inally,  t he  constants b and c 

conditions are  determined subject t o  the con- 

Eq. (12). 
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It should be noted t h a t  the  method i s  very general, except for 

the  choice of the  specif ic  f k x t i o n a l  (9)  which has been selected. 

The reason fo r  t h i s  par t icu lar  choice r e s t s  on the f a c t  t h a t  ex- 

perience has indicated t h i s  functional t o  yield good r e su l t s  with 

only a moderate mount  of computations. 

of the functional which yields optimal r e su l t s  i s  a fur ther  area 

The selection of the  form 

where research seems indicated, although not too promising. 
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Some Examples 

The procedure outlined above will now be applied t o  some 

l inear  continuous systems subjecbed t o  random loads. Two 

observations are important regarding these examples: i) a l l  the  

examples are  of a nonconservative nature, even if the random func- 

t ions were replaced by constants and, ii) i n  none of t he  examples 

are the  equations of motion separable, hence a modal s t a b i l i t y  

analysis i s  not feasible. 

In  the  first example the computations and procedures are  

carried out i n  detail ;  

space, the  computations are simply indicated but the missing steps 

can be easi ly  f i l l e d  i n  by the interested reader. 

i n  the other two examples, f o r  economy of 

Fxmple 1. Consider the p a r t i a l  d i f f e ren t i a l  equation of 

motion 

where w = w(x,t) and x i s  one-dimensional, and the boundary 

conditions 

w(O,t)  = .-$+- a2w 0 t) = w(1,t) = ---..$-- a2wp t) = 0, t 2 0. 

ax ax 

It i s  of in te res t  t o  note tha t  i f  

(a) describe the motion of a "two-dimensional" e l a s t i c  p l a t e  i n  a 

u ( t )  E 5 = constant then Eqs. (a), 
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supersonic airstream of veloci ty  u and subjected t o  uniform 

normal forces p ( t )  at the simply supported edges x = 0 and 

x = 1, a configuration i l l u s t r a t ed  i n  Figure l (a) .  

with piston theory, t he  terms 

dynamic forces due t o  the  airstream. If u ( t )  0, then Eqs. (20) 

and ( U )  represent a simply supported e l a s t i c  column under an ax ia l  

load p ( t )  w i t h  5 a s  the coefficient of viscous damping, 

Figure l (b ) .  

has been discussed i n  d e t a i l  i n  [TI .  

In  accordance 

&T - & ?  2% + u represent the  aero- 

In  t h i s  r a t t e r  case, the problem i s  separable and 

For Eqs. ( 2 0 )  and ( U )  it i s  c lear  Ynat 

where integration by par ts  has been used. 

forward inequal i t ies  or, even more fundamentally, of a var ia t ional  

technique w i t h  Lagrange multipliers yields the  value of k = T 

sat isfying Eq. (10) and a function \(t> sat isfying Eq. (17). 

Let  us i l l u s t r a t e  t h i s  procedure i n  the determination of 

Application of s t ra ight-  

4 

$@) 
I n  t h i s  case, consider the functional 

2 1 
- AV = -I [(A+b) (%)* + (14s  -b)v + (Ab+2b5-2c)vw + 

(23) 
0 ax 

+ p(t)(2v+bw)-2 a2, + Acw 2 + 2u(t)v ad )ax. zi ax 



1 2  

The var ia t ion of t h i s  functional i s  writ ten i n  the form 

1 
8(ir,hV) = -2s {@(w,v,t)Gv + q(w,v,t)h)dx, 

0 

where 

and 

I 
@(W,V, t )  = (h+45-b)~ + p ( h b + 2 b l - 2 ~ ) ~  + 

q(w,v,t) = T(hb+2b6-2c)v 1 - U(t)-& & -I- p(t)- a2v 4- 

b2 
4 

ax ax 
+ hcw 4- bp(t)7 a2W + ( h + l ~ ) ~  b w  . 

Forcing the var ia t ion (24) t o  vanish yields the  two equations (0 = 0 

and q = 0, whose l i n e a r i t y  allows f o r  the  elimination of one of 

the unknowns, say v, yielding the  fourth order equation i n  w 

a2w 
ax b2 

4 
c (h+b) (A+4(-b) - P"t)]% + [ (2c+2@ -b2)p(t) + u2(t)]- + 

This ordinary d i f f e ren t i a l  equation, f o r  p ( t )  and u ( t )  f ixed 

quantit ies,  with the  boundary conditions ( U )  yields the eigen- 

functions w(x)  E s in  n TX and the  eigenvalues h = An(%) of the  form 



m a x  h (t) yields the desired function. This n Sett ing h(t) = 
n=l, 2,. o .  

maximization i s  somewhat complicated, and f o r  computational 

simplicity it i s  desirable t h a t  the maximum occur f o r  a fixed value 

of n, independently of the  values of u ( t )  and p ( t ) .  This is  

easily accomplished by l e t t i n g  a n = 0, i.e. forcing 

it i s  noted t h a t  the functional V[w,v] 

ing condition can be sa t i s f i ed  along with condition (12), which i n  

t h i s  case takes the form 

is  such t h a t  this simplify- 

2 4 b I. 4(n 3- c) - 8, 

by an appropriate choice of the parameters b and e. 

With the use of condition (29) it i s  c lear  t h a t  the maximum 

of (28) occurs f o r  n = 1 if 0 5 b 5 45, a-d therefore 
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Hence, the s t a b i l i t y  condition (19) becomes, i n  th i s  case, 

E 

Application 

t 1 

3f Schwarz's inequality then immediately yields  

and the optimal choice fo r  the parameter 

with 0 6 b 6 45 i s  immediately found as 

b consistent with (30) and 

Hence, with t h i s  value of b, the s t a b i l i t y  condition becomes 

2 1 2  
EEP ( t ) ]  + TE{U (t)] 5 

a 

Therefore, i f  p ( t )  and u ( t )  a re  such t h a t  Eq, (33) i s  sa t i s f i ed  



then the system governed by Eqs. (20) and (21) i s  almost surely 

asymptotically stable; the  s t a b i l i t y  resu l t s  given by Eq. (35) are 

depicted i n  graphZca1 form i n  Figure 2. 

It should be noted tha t  the s t a b i l i t y  c r i t e r ion  (33)  i s  

applicable t o  every s e t  of functions p ( t )  and u( t )  f o r  which 

E{p2(t)] and E{u2(t)] are  defined. Hence, if  we consider the 

special  case p ( t )  E p = constant and u ( t )  0 which describes 

the  case of the column in Figure l (b )  under a constant load p 

note t h a t  the buckling load i s  then given by po = T f o r  a l l  E; 

therefore, i f  Efp  (t)] > T 

least one function p(t )  i n  t h i s  c lass  t ha t  produces ins tab i l i ty ,  

and hence T 

type shown i n  Figure 2, 

which i s  only a suf f ic ien t  condition for  s tab i l i ty ,  i s  r e l a t ive ly  

sharp. 

0 

we 
0’ 

2 

2 4 we are  assured that there ex is t s  a t  

4 i s  an upper bound fo r  the  s t a b i l i t y  region of the 

This remark shows t h a t  the r e su l t  obtained, 

S t ab i l i t y  c r i t e r i a  i n  terms of the expectations E{ 1 p ( t )  [ ] and 

E { l u ( t ) l ]  a re  a l so  eas i ly  obtained from Eq. (32). Since E{I v+p[ ] S 

E { / v l ]  + E { l p l ]  and & =  [ V I ,  a suf f ic ien t  condition fo r  (32) t o  

b + b /4 - E. (36) 

The optimal choice of b f o r  t h i s  inequality i s  given by 
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2 for 5 I . 9 6 ~  

which yields the s t a b i l i t y  domain depicted i n  Figure 3 .  

Example 2. A s  a second example, l e t  us consider the s t a b i l i t y  

of a cantilevered c o l m  subjected a t  i t s  f r ee  end to a random 

follower force, as indicated i n  Figure 4. Viscous damping i s  

assumed, and therefore the  equation of motion f o r  the l a t e r a l  dis-  

placement w(x,t) i s  given by 

a2w + && &i + 7 a4w + p(t)--, a2w = 0, 0 < x < 1, t 2 0, 

2 & ;abC 

with boundary conditions 

Th’e same procedure as the one given i n  d e t a i l  fo r  Example 1 

i s  followed for the  determination of A (t). Forcing the s t a b i l i t y  

conditions to be i n  the form of res t r ic t ions  on E(p2( t ) ] ,  the  

optimzl vaL.e  of b i s  found as 

M 



leading to the  s t a b i l i t y  c r i t e r ion  

4 4  4E2 - 325 /TI- - E if E, s r2/4 

if E, 2 TI- /4 71.18- E 
ECp2(t)l 5 . 

2 4 

The s t a b i l i t y  region defined by these equations i s  depicted i n  

Figure 5. 

It i s  of i n t e re s t  to r e c a l l  the s t a b i l i t y  c r i t e r ion  f o r  

the case of a constant follower force, p ( t )  3 

E, = 0, Beck [8] has shown tha t  the column i s  s tab le  (but not 

asymptotically s table)  i f  and only i f  

= constant. For 

and it i s  known t h a t  fo r  

asymptotic s t a b i l i t y  [g]. 

above with t h i s  condition suggests t ha t  the s t a b i l i t y  c r i t e r ion  

(41) i s  probably not a very sharp one, and t h a t  it can probably be 

improved. However r e s t r i c t i v e  t h i s  condition, it must be pointed 

5 > 0 

A comparison of the r e su l t  obtained 

t h i s  condit'lon i s  suf f ic ien t  f o r  



out t h a t  it was obtained i n  a simple and straightforward manner; it 

i s  believed t o  be the f i r s t  s t a b i l i t y  c r i t e r ion  obtained f o r  a 

cantilever subjected t o  a time-dependent follower force. 

Example 3. As a f i n a l  example, consider the  equation 

&i 
2 2 ?+ a w  2%E b -  2 a w + f ( t ) x = o ,  O < x < l ,  t z o ,  

w i t h  the  associated boutdary conditions 

w(0,t) = w ( 1 , t )  = 0, t 2 0. 

(43 1 

Here w(x,t) represents the l a t e r a l  displacement of a s t r ing  

stretched between fixed ends and subjected to a transverse load 

f(t)z and damping force 

the form 

b 25= . The functional V[W,V] then has aw 

2 2 1 
V[w,V] = 1 [(g)2 + v + bvw + cw ]dx. 

0 
(45) 

Following again the procedure of Example 1 yields the  optimal values 

of the  parameters b and c t o  be 

2 
E l f  (t)] upon which the s t a b i l i t y  c r i t e r ion  i n  terns  of i s  obtained 



k e d i a t e l y  as 

a c r i t e r ion  depicted graphically i n  Figure 6. 



Conchding Remarks 

A s  the three above examples illustrate, the method suggested 

in this paper is a simple, straightforward tool for the determination 

of sufficient conditions for the almost sure asymptotic stability of 

some continuous systems subjected to random excitation. This method 

is not an approximate one and it does not require that the equations 

of motion be separable, as the modal approach demands, Furthermore, 

the techniques used are relatively independent of the non-self- 

adjointness of the equations and the stability criteria obtained can 

be put in the form of simple equations involving the expectations of 

the disturbances. 

The computations required are rather elementary,involving only 

the use of some rather well-known inequalities or, at most, the solu- 

tion of simple eigenvalue problems, 

The stability criteria obtained are only sufficient, as is to 

be expected; 

allows for the ease of the computations but is, on the other hand, a 

restriction which may cause the criteria obtained to be very con- 

servative, The optimal choice of this functional remains an open 

problem, ’ 

the choice of a definite form for the functional V 
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